

## Precipitation


-All forms of moisture emanating from the clouds and all forms of water like rain, snow, hail and sleet derived from atmospheric vapors, falling to the ground.


- The amount of water vapor that the atmosphere can carry (the saturation vapor pressure) is a function of temperature.
- Having water vapor in the atmosphere is a necessary but insufficient condition for precipitation. There must also be a mechanism to promote uplift, cooling and condensation.

Formation of Precipitation


## - Mechanism of Cooling

When the air ascends from near the surface to upper levels in the atmosphere, pressure reduction takes place. Due to this pressure reduction air crosses through the colder layers and this is the only mechanism capable of producing the degree and rate of cooling needed to account for heavy rainfall.


- Condensation of Water Vapor Condensation of water into cloud droplets takes place on condensation nuclei or hygroscopic nuclei having affinity for water.

The source of these condensation nuclei is the particles of dust, sea salt or such products of combustion of certain sulfurous and nitrous acids.

Condensation occurs when the temperature is $\leq$ the dew point $T_{d}$

Typical $\mathrm{CN}=0.2 \mu \mathrm{~m}$
Typical cloud droplets are 20-100 $\mu \mathrm{m}$

## Relative sizes of CCN, cloud droplets and rain droplets



- Growth of Cloud Droplets

Bergeron-Findeisen theory: If ice and supercooled water droplets exist together in a cloud, the ice crystals grow at the expense of water droplets, the reason being that the saturation vapor pressure over ice is lower than over water.

Solid precipitation that falls may (or may not) melt at a
 lower, warmer atmospheric level to become rain.

Coalescence Occurs in warm (liquid) clouds.
Falling droplets have terminal velocities directly related to their diameter, such that the larger falling drops overtake and absorb smaller drops, the smaller drops can also be swept into the wake of larger drops and be absorbed by them.

## Moisture Accumulation






## Moisture accumulation

- Heavy rainfall amount over a river basin exceeds by far the amount of water vapor at the atmospheric volume vertically above the basin at the beginning of the rainfall.
- Clearly there must be a large net horizontal inflow of water vapor into the atmosphere above the basin area. This process is called convergence, which is defined as the net horizontal influx of air per unit area.



## Types of Precipitation

The air close to the warm earth gets heated and rises due to its low density, cools adiabatically to form a cauliflower shaped cloud, which finally bursts into a thunder storm.


Convective precipitation tends to be localized. Keys to convective storm development are low atmospheric stability and ample atmospheric water vapor.

The stronger the decrease in temperature with height (the more negative the environmental lapse rate), and the more water vapor that is available, the more favourable the conditions for convective storms.

- When two air masses due to contrasting temperatures and densities clash with each other, condensation and precipitation occur at the surface of contact called Frontal Precipitation.
- This surface of contact is called a 'front' or 'frontal surface'.
- If a cold air mass drives out a warm air mass' it is called a 'cold front' and if a warm air mass replaces the retreating cold air mass, it is called a 'warm front'.
- If the two air masses are drawn simultaneously towards a low pressure area, the front developed is stationary and is called a 'stationary front


Warm front
Source: Lutgens and Tarbuck, 2004



- Orographic precipitation results from ascent of air over a mountain barrier, resulting in adiabatic cooling, condensation and precipitation on the upwind side of the barrier. The leeward side experiences a rain shadow.
- As it descends on the leeward side, it warms at the adiabatic lapse rate, and arrives at a higher temperature than it had before the ascent process. These warm, leeside conditions are often associated with strong gusty winds called chinooks.

(9) 1998 Wadsworth Publishing Company/ITP
- Cyclonic precipitation is due to lifting of moist air converging into a low pressure belt, i.e., due to pressure differences created by the unequal heating of the earth's surface.
- Here the winds blow spirally inward counter clockwise in the northern hemisphere and clockwise in the southern hemisphere.
- There are two main types of cyclones-tropical cyclone (also called hurricane or typhoon) of comparatively small diameter of $300-1500 \mathrm{~km}$ causing high wind velocity and heavy precipitation, and the extra-tropical cyclone of large diameter up to 3000 km causing wide spread frontal type precipitation.




## Forms of precipitation

- Drizzle
- These are the minute particles of water at start of rain. These consist of water drops under 0.5 mm diameter and its intensity is usually less than $1.0 \mathrm{~mm} / \mathrm{hr}$.
- Their speed is very
 slow and we cannot even feel them. Therefore they cannot flow over the surface but usually evaporate.


## - Rain

- The size of drops in this case is more than 0.5 mm and less than 6.25 mm in diameter.
- It can produce flow over the ground and can
 infiltrate and percolate.
- Both the duration as well as rate of rainfall are important.
- If the rainfall per unit time is greater than the rate of infiltration, the rain water can flow over the surface of earth.

- Glaze
- It is the ice coating formed on drizzle or rain drops as it comes in contact with the cold
 surfaces on the ground.
- Sleet
- Sleet is frozen rain drops cooled to the ice stage while falling through air at subfreezing temperatures.

- Snow
- Snow is precipitation in the form of ice crystals resulting from sublimation i.e. change of water vapor directly to ice.
- A number of snow crystals fuse together to form a snow flake.



## On CALTECH (California Institute of Technology)

## $\leftarrow \rightarrow$ C $\mathbb{1}$ [www.its.caltech.edu/~atomic/snowcrystals/class/class.htm

## Snow-Orystals.com

Snowcrystals.com Home
Natural Snowflakes
--Photo Gallery I
--Photo Gallery II
--Photo Gallery III
-Guide to Snowflakes
--Snowflake Books
-Historic Snowflakes -Ice Crystal Halos
--Snowflake Store
Designer Snowflakes
-I: First Attempts
--II: Better Snowflakes
--III: Precision Snow
--Snowflake Movies
--Free-falling Snow

## A Guide to Snowflakes

## ... A look at the different types of falling snow ..

If you look closely at falling snow, you can see a great many different crystal shapes. There's a lot more to see than you might think!

The table at right shows the more common and/or distinctive types of snowflakes. Click on the table for a more detailed look, then scroll down this page for examples of the different types.


This page is an abbreviated version of my Field Guide to Snowflakes.


- Hail
- Hail is the type of precipitation in the form of balls or lumps of ice over 5 mm diameter formed by alternate freezing and melting as they are carried up and down by highly turbulent air currents



Precipitation Measurement

- The amount of precipitation means the vertical depth of water that would accumulate on a level surface, if the precipitation remains where it falls. It is usually measured in units of depth (inches, mm, cm etc).
- Amount of precipitation per unit time is called the intensity of precipitation or rate of precipitation
- Precipitation is measured by a network of rain gauges which may either be of non-recording or recording type.
- The US Weather Bureau Non-Recording Rain Gauge.
- When snow is expected both the collector and tube is removed then.
- The inside measuring tube has a cross sectional area 1/10th of the collector, so that 2.5 mm
 rain fall will fill the tube to 25 mm depth.


## Recording Rain-gauges

- This is also called selfrecording, automatic or integrating rain gauge.
- It has an automatic mechanical arrangement consisting of a clockwork, a drum with a graph paper


Mass curve of rainfall fixed around it and a pencil point, which draws the mass curve of rainfall

- The gauge is installed on a concrete or masonry platform 45 cm square in the observatory enclosure.
- The gauge is so installed that the rim of the funnel is horizontal and at a height of exactly 75 cm above ground surface.
- There are three types of recording rain gauges-tipping bucket gauge, weighing gauge and float gauge.

- Tipping bucket rain gauge. This consists of a cylindrical receiver 30 cm diameter with a funnel inside. Just below the funnel a pair of tipping buckets is pivoted such that when one of the bucket receives a rainfall of 0.25 mm it tips and empties into a tank below, while the other bucket takes its position and the process is repeated.

1662 First Tipping Bucket Raingauge


Sir Christopher Wren, England (1632-1732, aged 90)


## Snow-Telemetry (SNOTEL)



## Areal Rainfall



Non-uniform

## Radar

RAdio Detection And Ranging



NOAA

## Receiver

$$
\begin{aligned}
& Z \approx \int D^{6} N(D) d D \\
& R \approx \int D^{3.67} N(D) d D
\end{aligned} \quad \square \mathrm{Z}=a R^{b}
$$

Source: www2010, Univ. of Illinois

Doppler weather radar


NEXRAD Next-Generation Radar

## NEXRAD

UK weather radars


## Weather radar network in China



Doppler Weather radar 126

## 10-cm Doppler Radars

1- Lahore
2- Mangla

QPM Radar
1- Sialkot

$\square \quad$ 5-cm Wx. Surveillance Radars Islamabad, D.I.Khan Rahim Yar Khan Karachi


## Clutter removal using a Bayes classifier



Clutter $=$ Non-precipitation echoes such as echoes from
the ground, sea, ship, airplanes


Rain Gauge Network

- In comparatively flat regions of Temperate (Latitudinal range $40^{\circ}$ and $60 / 70^{\circ}$ e.g. Ireland), Mediterranean (Latitudinal range $30^{\circ}$ and $45^{\circ}$ e.g. Most part of Europe) and Tropical Zones (Latitude range $5 \% / 10^{\circ}$ to $35^{\circ} \mathrm{e} . \mathrm{g}$. Amazon)
- Ideal is at least one station for $230-345$ sq. miles. However one station for $345-1155$ sq. miles is also acceptable.
- In mountainous regions of Temperate, Mediterranean and Tropical Zones, Ideal is at least one station for 35 - 95 sq. miles. However one station for $95-385$ sq. miles is also acceptable.
- In arid (Saudi Deserts) and polar zones, one station for $575-3860$ sq. miles is acceptable


Analysis of Precipitation data

- Point Data Analysis
- Point precipitation data refers to precipitation of a station.
- This data could be in form of hourly record, daily record, monthly precipitation or annual precipitation.
- Data continuity and consistency of a rain gauge should be checked first.


## Reasons for Missing Precipitation Record

- Absence of the observer
- Instrumental failures.
- Hence missing data has to be estimated
- There are two methods for estimation of missing data.
- Arithmetic mean method.
- Normal ratio method.
- The gauging station whose data is missing is called interpolation station and
- The gauging stations whose data are used to calculate the missing station data are called index stations.
- If the normal annual precipitation of the index stations lies within $\pm \mathbf{1 0 \%}$ of normal annual precipitation of interpolation station then we apply arithmetic mean method to determine the missing precipitation record otherwise the normal ratio method is used for this purpose.
- Consider that record is missing from a station ' X '.
- Now let,
$\mathrm{N}=$ Normal annual precipitation. (Mean of 30 years of annual precipitation data)
P = Storm Precipitation.
- Let $P_{x}$ be the missing precipitation for station ' $X$ ' and $N_{x}$, the normal annual precipitation of this station, $N_{a}, N_{b}$ and $\mathrm{N}_{\mathrm{c}}$ are normal annual precipitations of nearby three stations, $A, B$ and $C$ respectively while $P_{a}, P_{b}$ and $P_{c}$ are the storm precipitation of that period for these stations.
- Now we have to compare $\mathrm{N}_{\mathrm{x}}$ with $\mathrm{N}_{\mathrm{a}}, \mathrm{N}_{\mathrm{b}}$ and $N_{c}$ separately. If difference of $N_{x}-N_{a}, N_{x}-N_{b}$, $N_{x}-N_{c}$ is within $1 / 10 \%$ of $N_{x}$ then we use simple arithmetic mean method otherwise the normal ratio method is used.
- According to the arithmetic mean method the missing precipitation is given as:
$\frac{1}{n} \sum_{i=1}^{i=n} P_{i}$ where n is number of nearby stations.


## Normal Ratio Method

- According to the normal ratio method the missing precipitation is given as:

$$
\mathrm{P}_{\mathrm{x}}=\frac{1}{n} \sum_{i=1}^{i=n} \frac{N_{x}}{N_{i}} P_{i}
$$

- where $P_{\mathrm{x}}$ is the missing precipitation for any storm at the interpolation station ' X '.
- $P i$ is the precipitation for the same period of same storm at the "ith" station of a group of index stations and
- $N_{x}$ and $N_{i}$ are the normal annual precipitation values for the ' $X$ ' and 'ith' stations e.g. in case of three index stations

$$
P_{x}=\frac{1}{3}\left[\frac{N_{x}}{N_{1}} P_{1}+\frac{N_{x}}{N_{2}} P_{2}+\frac{N_{x}}{N_{3}} P_{3}\right]
$$

- Example
- Find out the missing storm precipitation of station ' $C$ ' given in the following table: (can we apply Simple Arithmetic Mean Method to Approach the Solution?)

| Station | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Storm precipitation <br> $(\mathrm{cm})$ | 9.7 | 8.3 | ---- | 11.7 | 8.0 |
| Normal Annual <br> precipitation (cm) | 100.3 | 109.5 | 93.5 | 125.7 | 117.5 |

Continued...

- Solution

In this example the storm precipitation and normal annual precipitations at stations A, B, D and E are given and missing precipitation at station ' $C$ ' is to be calculated whose normal annual precipitation is known. We will determine first that whether arithmetic mean or normal ratio method is to be applied.
$10 \%$ of $N_{c}=93.5 \times 10 / 100=9.35$
After the addition of $10 \%$ of $N_{c}$ in $N_{c}$, we get $93.5+9.35=102.85$

And by subtracting $10 \%$ we get a value of 84.15
So $N_{3}, N_{b}, N_{d}$ or $N_{e}$ values are to be checked for the range $102.85^{\prime}$ to 84.15 .

If any value of $N_{a}, N_{b}, N_{d}$ or $N_{e}$ lies beyond this range, then normal ratio method would be used. It is clear from data in table above that $\mathrm{N}_{\mathrm{b}}, \mathrm{N}_{\mathrm{d}}$ and $\mathrm{N}_{\mathrm{e}}$ values are out of this range so the normal ratio method is applicable here, according to which

$$
\mathrm{Px}=\frac{1}{n} \sum_{i=1}^{i=n} \frac{N_{X}}{N_{i}} P_{i}
$$

$$
\begin{aligned}
& \text { Pc }=(1 / 4)(93.5 \times 9.7 / 100.3+93.5 \times 8.3 / 109.5+93.5 \times \\
& 11.7 / 125.7+93.5 \times 8.0 / 117.5)=7.8 \mathrm{~cm}
\end{aligned}
$$

- Example

Precipitation station " $X$ " was inoperative for part of a month during which a storm occurred. The storm totals at three surrounding stations A, B and C were respectively $10.7,8.9$ and 12.2 cm .

The normal annual precipitation amounts at stations $X, A, B$ and $C$ are respectively $97.8,112$, 93.5 and 119.9 cm . Estimate the storm precipitation for station ' $X$ '.

- Solution

$$
\begin{array}{ll}
\mathrm{Pa}=10.7 \mathrm{~cm} & \mathrm{Na}=112 \mathrm{~cm} \\
\mathrm{~Pb}=8.90 \mathrm{~cm} & \mathrm{Nb}=93.5 \mathrm{~cm} \\
\mathrm{Pc}=12.2 \mathrm{~cm} & \mathrm{Nc}=119.9 \mathrm{~cm} \\
\mathrm{Px}=? & \mathrm{Nx}=97.8 \mathrm{~cm} \\
& \\
10 \% \text { of } \mathrm{Nx}=97.8 \times 10 / 100=9.78 \mathrm{~cm} .
\end{array}
$$

$\therefore \mathrm{Nx}-\mathrm{Na}=97.8-112=-14.2 \mathrm{~cm} \Rightarrow$ More than $+10 \%$ of Nx (no need of calculating $\mathrm{Nx}-\mathrm{Nb}$ and $\mathrm{Nx}-\mathrm{Nc}$

So we will use Normal Ratio Method
$\therefore \mathrm{Px}=(1 / 3)(97.8 \times 10.7 / 112+97.8 \times 8.90 / 93.5+97.8 \times 12.2$ /119.9)

$$
P x=9.5 \mathrm{~cm}
$$

Consistency of Precipitation Data or Double Mass Analysis

- In using precipitation in the solution of hydrologic problems, it is necessary to ascertain that time trends in the data are due to meteorological changes only and not other factors like
- Changes in the gauge location
- Change in surroundings such as
- Construction of buildings or
- Growth of trees etc.
- Frequently changes in gauge location are not disclosed in the published record.
- Due to such changes the data might not be consistent.
- The consistency of the record then is required to be determined and the necessary adjustments be made. This can be achieved by the method called the double mass curve technique.
- The double mass curve is obtained by plotting the accumulated precipitation at the station in question along X-axis and the average accumulated precipitation of a number of other nearby stations which are situated under the same meteorological conditions along Y -axis.
- If the curve has a constant slope, the record of station " $X$ " is consistent. However, if there is any break in the slope of the curve, the record of the station is inconsistent and has to be adjusted by the formula.

$$
P_{a}=\left(S_{a} / S_{0}\right) \times P_{0}
$$

Where $\quad \mathrm{P}_{\mathrm{a}}=$ Adjusted precipitation.
$\mathrm{P}_{\mathrm{o}}=$ Observed precipitation.
$\mathrm{S}_{\mathrm{a}}=$ Slope prior to the break in the curve
$\mathrm{S}_{\mathrm{o}}=$ Slope after the break in the curve.

- All values before break are to be adjusted.

Example: Check consistency of the data given in table below and adjust it if it is found to be inconsistent

| Year | Annual precipitation at $x$ (mm) | Mean of annual precipitation of 20 surrounding stations (mm) | Year | Annual precipitation at x (mm) | Mean of annual precipitation of 20 surrounding stations (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1972 | 188 | 264 | 1954 | 223 | 360 |
| 1971 | 185 | 228 | 1953 | 173 | 234 |
| 1970 | 310 | 386 | 1952 | 282 | 333 |
| 1969 | 295 | 297 | 1951 | 218 | 236 |
| 1968 | 208 | 284 | 1950 | 246 | 251 |
| 1967 | 287 | 350 | 1949 | 284 | 284 |
| 1966 | 183 | 236 | 1948 | 493 | 361 |
| 1965 | 304 | 371 | 1947 | 320 | 282 |
| 1964 | 228 | 234 | 1946 | 274 | 252 |
| 1963 | 216 | 290 | 1945 | 322 | 274 |
| 1962 | 224 | 282 | 1944 | 437 | 302 |
| 1961 | 203 | 246 | 1943 | 389 | 350 |
| 1960 | 284 | 264 | 1942 | 305 | 228 |
| 1959 | 295 | 332 | 1941 | 320 | 312 |
| 1958 | 206 | 231 | 1940 | 328 | 284 |
| 1957 | 269 | 234 | 1939 | 308 | 315 |
| 1956 | 241 | 231 | 1938 | 302 | 280 |
| 1955 | 284 | 312 | 1937 | 414 | 343 |

- Solution
- A double mass curve is plotted by taking cumulative of average precipitation of surrounding stations along $x$-axis and accumulative precipitation of station ' $X$ ' along y -axis for which consistency of data is being investigated.

- The correction for slope is applied to readings before break in slope (in time). The calculations are shown in table, below.

Slope of Ist line = Sa=0.854
Slope of deviating line $=$ So $=1.176$
Correction to values (multiplying factor) $=0.854 / 1.176=0.70$

- Now regime changes before 1950. So up to 1950 no correction is required. Before 1950 all readings are multiplied by slopes ratio of 0.7 to get corrected precipitation.
- Note that data in latter interval (1973-1950) is considered more authentic so kept in initial reach of the graph.

Table: Adjusted Precipitation

| Year | Cummulative Annual precipitation at x (mm) | Cummulative precipitation of 20 surrounding stations (mm) | Corrected Precipitation | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 1972 | 188 | 264 | 188 | $\begin{aligned} & z \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \\ & 0 \\ & 0 \end{aligned}$ |
| 1971 | 373 | 492 | 185 |  |
| 1970 | 683 | 878 | 310 |  |
| 1969 | 978 | 1175 | 295 |  |
| 1968 | 1186 | 1459 | 208 |  |
| 1967 | 1473 | 1809 | 287 |  |
| 1966 | 1656 | 2045 | 183 |  |
| 1965 | 1960 | 2416 | 304 |  |
| 1964 | 2188 | 2650 | 228 |  |
| 1963 | 2404 | 2940 | 216 |  |
| 1962 | 2628 | 3222 | 224 |  |
| 1961 | 2831 | 3468 | 203 |  |
| 1960 | 3115 | 3732 | 284 |  |
| 1959 | 3410 | 4064 | 295 |  |
| 1958 | 3616 | 4295 | 206 |  |
| 1957 | 3885 | 4529 | 269 |  |
| 1956 | 4126 | $4760$ | 241 |  |
| 1955 | 4410 | 5072 | 284 |  |
| 1954 | 4633 | 5432 | 223 |  |
| 1953 | 4806 | 5666 | 173 |  |
| 1952 | 5088 | 5999 | 282 |  |
| 1951 | 5306 | 6235 | 218 |  |
| 1950 | 5552 | 6486 | 246 |  |

Table: Adjusted Precipitation

| Year | Cumulative Annual precipitation at x (mm) | Cumulative precipitation of 20 surrounding stations (mm) | Corrected Precipitation | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 1949 | 5836 | 6770 | 190.8 |  |
| 1948 | 6329 | 7131 | 345 |  |
| 1947 | 6649 | 7413 | 224 |  |
| 1946 | 6923 | 7665 | 192 |  |
| 1945 | 7245 | 7939 | 225.4 |  |
| 1944 | 7682 | 8241 | 306 |  |
| 1943 | 8071 | 8591 | 272.3 |  |
| 1942 | 8376 | 8819 | 213.5 |  |
| 1941 | 8696 | 9131 | 224 |  |
| 1940 | 9024 | 9415 | 229.6 |  |
| 1939 | 9332 | 9730 | 215.6 |  |
| 1938 | 9634 | 10010 | 211.4 |  |
| 1937 | 10048 | 10353 | 290 |  |

