Applications of Bernoulli's theorem

Lecture - 7

Practical Applications of Bernoulli's Theorem

\square The Bernoulli equation can be applied to a great many situations not just the pipe flow we have been considering up to now.
\square In the following sections we will see some examples of its application to flow measurement from tanks, within pipes as well as in open channels.

1. Venturimeter
2. Orificemeter
3. Pitot tube

1. Venturimeter:

\square The Venturimeter is a device for measuring discharge in a pipe.
\square It consists of three parts.
a. Convergent Cone
b. Throat
c. Divergent Cone

a. Convergent Cone:

\square It is a short pipe which converges from a diameter d_{1} (diameter of a pipe in which a venturimeter is fitted) to a smaller diameter d_{2}.
\square The convergent cone is also known as inlet of the venturimeter.
\square The slope of the converging sides is between 1 in 4 or 1 in 5.

b. Throat:

\square It is a small portion of circular pipe in which the diameter d_{2} is kept constant.

c. Divergent Cone:

\square It is a pipe, which diverges from a diameter d_{2} to a large diameter d_{1}.
\square The divergent cone is also known as outlet of venturimeter.
\square The length of the divergent cone is about 3 to 4 times than that of convergent cone.

How it operates?

\square It consists of a rapidly converging section, which increases the velocity of flow and hence reduces the pressure (acceleration b / w section 1-2).
\square It then returns to the original dimensions of the pipe by a gently diverging ' diffuser ' section (deceleration b / w section 2-3).
\square By measuring the pressure differences the discharge can be calculated.
\square This is a particularly accurate method of flow measurement as energy losses are very small.

Why the divergent cone is made longer?

\square As a result of retardation (section 2-3), the velocity decreases and pressure increases.
\square If the pressure is rapidly recovered, then there is every possibility for the stream of liquid to break away from the walls of meter.

- In order to avoid the tendency of breaking away the stream of liquid, the divergent cone is made sufficiently longer.
\square Another reason is to minimize friction losses.
\square Divergent cone is 3 to 4 times longer than convergent cone.

Measurement of Discharge:

\square Consider a venturimeter through which some liquid is flowing.

Let

$\square \mathrm{p}_{1}=$ Pressure at section 1
$\square \mathrm{V}_{1}=$ Velocity of water at section 1
$\square \mathrm{z}_{1}=$ Datum head at section 1
$\square a_{1}=$ Area of venturimeter at section 1
$\square \mathrm{p}_{2}, \mathrm{~V}_{2}, \mathrm{z}_{2}, \mathrm{a}_{2}=$ Corresponding values at section 2

Applying Bernoulli's equation at sections 1 and 2 i.e, $\frac{p_{1}}{\gamma}+z_{1}+\frac{V_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+z_{2}+\frac{V_{2}^{2}}{2 g}$
Let datum line be the axis of venturimeter,
Now $z_{1}=0$ and $z_{2}=0$
$\therefore \frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}$
or $\frac{p_{1}}{\gamma}-\frac{p_{2}}{\gamma}=\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}$
Since the discharge at Section $1 \& 2$ is continuous, therefore

$$
\begin{aligned}
& \mathrm{V}_{1}=\frac{a_{2} V_{2}}{a_{1}} \\
& \therefore \mathrm{~V}_{1}^{2}=\frac{a_{2}^{2} V_{2}^{2}}{a_{1}^{2}}
\end{aligned}
$$

$$
\left(\because \mathrm{a}_{1} V_{1}=\mathrm{a}_{2} V_{2}\right)
$$

Substituting value in equation 2 .

$$
\begin{aligned}
\frac{p_{1}}{\gamma}-\frac{p_{2}}{\gamma} & =\frac{V_{2}^{2}}{2 g}-\frac{a_{2}^{2} V_{2}^{2}}{a_{1}^{2} \cdot 2 \mathrm{~g}} \\
& =\frac{V_{2}^{2}}{2 g}\left(\frac{a_{1}^{2}-a_{2}^{2}}{a_{1}^{2}}\right)
\end{aligned}
$$

We know that $\frac{p_{1}}{\gamma}-\frac{p_{2}}{\gamma}$ is the difference between the pressure heads
at section $1 \& 2$. When the pipe is horizontal, this difference represents the venturi head and is denoded by h.
or $\mathrm{h}=\frac{V_{2}^{2}}{2 g}\left(\frac{a_{1}^{2}-a_{2}^{2}}{a_{1}^{2}}\right)$

$$
\mathrm{V}_{2}^{2}=2 g h\left(\frac{a_{1}^{2}}{a_{1}^{2}-a_{2}^{2}}\right)
$$

$$
\mathrm{V}_{2}=\sqrt{2 g h}\left(\frac{a_{1}}{\sqrt{a_{1}^{2}-a_{2}^{2}}}\right)
$$

We know that discharge through a venturimter,
$\mathrm{Q}=$ Coefficent of Venturimter. $\mathrm{a}_{2} \cdot V_{2}$
$\mathrm{Q}=\mathrm{C} . \mathrm{a}_{2} . V_{2}$
$\mathrm{Q}=\left(\frac{C a_{1} a_{2}}{\sqrt{a_{1}^{2}-a_{2}^{2}}}\right) \sqrt{2 g h}$

Note:

The venturi head (h), in above equation is taken in terms of liquid head. But, in actual practice, this head is given as mercury head. In such a case the mercury head should be converted into the liquid head.

$$
h=(13.6-s) / s \quad x \quad \text { Head of mercury }
$$

Where, 13.6 is Sp . gravity of mercury and ' s ' is Sp . gravity of Oil.

Inclined Venturimeter:

Problems:

1. A venturimeter with a 150 mm diameter at inlet and 100 mm at throat is laid with its axis horizontal and is used for measuring the flow of oil (Sp . Gravity $=0.9$). The oil-mercury differential manometer shows a gauge difference of 200 mm . Assume coefficient of meter as 0.98 . Calculate discharge in liters per minute. (Ans, $\mathrm{Q}=3834 \mathrm{lit} / \mathrm{min}$).
2. A venturimeter has an area ratio of 9 to 1 , the larger diameter being 300 mm . During the flow, the recorded pressure head in the large section in 6.5 m and that at the throat 4.25 m . If the meter coefficient, $\mathrm{C}=0.99$, compute discharge through the meter. (Ans, $52 \mathrm{lit} / \mathrm{s}$).
3. A horizontal venturimeter $160 \mathrm{~mm} \times 80 \mathrm{~mm}$ is used to measure the flow of an oil of Sp. Gracity 0.8 . Determine the deflection of the oil-mercury gauge, if the discharge of the oil is 50lit/s. Take coefficient of venturimeter as 1. (Ans, 296mm).

Problems:

4. A venturimeter is to be filled to a 250 mm diameter pipe, in which the maximum flow is $7200 \mathrm{lit} / \mathrm{min}$ and the pressure head is 6 m of water. What is the minimum diameter of throat, so that there is no negative head in it? (Ans, 117 mm)
A $300 \mathrm{~mm} \times 150 \mathrm{~mm}$ venturimeter is provided in a vertical pipeline carrying oil of Sp . Gravity 0.9 , the flow being upwards. The difference in elevations of the throat section and entrance section of the venturimeter is 300 mm . The differential U tube mercury manometer shows a gauge deflection of 250 mm . Calculate
i) discharge of the oil
ii) pressure difference b / w the entrance and throat section.
(Ans, i) $\mathrm{Q}=149 \mathrm{lit} / \mathrm{s}$
ii) 3.695 m)

2. Orifice Meter:

\square An orifice meter is used to measure the discharge in a pipe. It consists of a plate having a sharp edged circular hole known as an orifice. This plate is fixed inside a pipe.

Measurement of Discharge:

\square A mercury manometer is inserted to know the difference of pressure between the pipe and the throat. (i.e., orifice)

Let
$\square \mathrm{h}=$ Reading of mercury manometer
$\square \mathrm{p}_{1}=$ Pressure at the inlet
$\square \mathrm{V}_{1}=$ Velocity of liquid at inlet
$\square \mathrm{a}_{1}=$ Area of pipe at inlet
$\square \mathrm{p}_{2}, \mathrm{~V}_{2}, \mathrm{a}_{2}=$ Corresponding values at throat

Applying Bernoulli's equation for inlet of pipe and the throat,

$$
\begin{align*}
& \frac{p_{1}}{\gamma}+z_{1}+\frac{V_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+z_{2}+\frac{V_{2}^{2}}{2 g} \tag{1}\\
& \frac{p_{1}}{\gamma}-\frac{p_{2}}{\gamma}=\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g} \quad\left(\because \mathrm{z}_{1}=z_{2}\right) \\
& \text { or } \mathrm{h}=\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}=\frac{1}{2 g}\left(V_{2}^{2}-V_{1}^{2}\right)
\end{align*}
$$

Since the discharge is continuous, therefore
$\mathrm{V}_{1}=\frac{a_{2} V_{2}}{a_{1}}$
$\left(\because \mathrm{a}_{1} V_{1}=\mathrm{a}_{2} V_{2}\right)$
$\therefore \mathrm{V}_{1}{ }^{2}=\frac{a_{2}^{2} V_{2}^{2}}{a_{1}{ }^{2}}$

Substituting value in equation 2 .

$$
\begin{gathered}
h=\frac{1}{2 g}\left(V_{2}^{2}-\frac{a_{2}^{2} V_{2}^{2}}{a_{1}^{2}}\right)=\frac{V_{2}^{2}}{2 g}\left(\frac{a_{1}^{2}-a_{2}^{2}}{a_{1}^{2}}\right) \\
\mathrm{V}_{2}^{2}=2 g h\left(\frac{a_{1}^{2}}{a_{1}^{2}-a_{2}^{2}}\right) \\
\mathrm{V}_{2}=\sqrt{2 g h}\left(\frac{a_{1}}{\sqrt{a_{1}^{2}-a_{2}^{2}}}\right)
\end{gathered}
$$

We know that discharge,
$\mathrm{Q}=$ Coefficent of Orifice Meter. $\mathrm{a}_{2} . V_{2}$
$\mathrm{Q}=\mathrm{C} . \mathrm{a}_{2} . V_{2}$
$\mathrm{Q}=\left(\frac{C a_{1} a_{2}}{\sqrt{a_{1}^{2}-a_{2}^{2}}}\right) \sqrt{2 g h}$
(Same as venturimeter)

Problem:

\square An orifice meter consisting of 100 mm diameter orifice in a 250 mm diameter pipe has coefficient equal to 0.65 . The pipe delivers oil (Sp. Gravity 0.8). The pressure difference on the two sides of the orifice plate is measured by a mercury oil differential manometer. If the differential gauge reads 80 mm of mercury, calculate the rate of flow in lit/s. (Ans, $82 \mathrm{lit} / \mathrm{s}$)

3. Pitot Tube:

\square A Pitot tube is an instrument to determine the velocity of flow at the required point in a pipe or a stream.
\square It consists of glass tube bent a through 90°
\square The lower end of the tube faces the direction of the flow.
\square The liquid rises up in the tube due to the pressure exerted by the flowing liquid.
\square By measuring the rise of liquid in the tube, we can find out the velocity of the liquid flow.

Finding Velocity:

\square Let
$\square \mathrm{h}=$ Height of liquid in the pitot tube above the surface.
$\square \mathrm{H}=$ Depth of tube in the liquid
$\square \mathrm{V}=$ velocity of the liquid
\square Applying Bernoulli's equation for the section $1 \& 2$.

$$
\begin{aligned}
& H+\frac{V^{2}}{2 g}=\mathrm{H}+\mathrm{h} \\
& \mathrm{~h}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}} \\
& V=\sqrt{2 g h}
\end{aligned}
$$

Problem:

\square A pitot tube was inserted in a pipe to measure the velocity of water in it. If the water rises in the tube is 200 mm . Find velocity of water. (Ans, $1.98 \mathrm{~m} / \mathrm{s}$)

FLOW THROUGH ORIFICES

Introduction:

\square "Orifice is an opening in a vessel through which the liquid flows out."
\square This hole or opening is called an orifice, so long as the level of the liquid on the upstream side is above the top of the orifice.
\square The usual purpose of an orifice is the measurement of discharge.
\square It can be provided in the vertical side of the vessel on in the base. But the former is more common.

Types of Orifices According to:

Important Terms:

\square Jet of Water:
"The continuous stream of liquid, that comes out or flows out of an orifice, is known as Jet of water."
\square Vena Contracta:
\square Vena contracta is the point in a fluid stream where the diameter of the stream is the least, and fluid velocity is at its maximum.

Vena Contracta:

\square Consider a tank, fitted with an orifice. The liquid particle, in order to flow out through the orifice, move towards the orifice from all directions.
\square A few of the particles first move downward, then take a turn to enter into the orifice and then finally flow through it.
\square It may be noted, that the liquid particles lose some energy, while taking the turn to enter into the orifice.
\square It has been thus observed that the jet, after leaving the orifice, gets contracted.
\square The maximum contraction takes place at a section slightly on the downstream side of the orifice, where the jet is more or less horizontal. Such a section is known as vena contracta as shown by section $\mathrm{C}(1-2)$ in figure.

Vena Contracta:

Hydraulic Coefficients:

Following four coefficients are known as hydraulic coefficients or orifice Coefficient.
${ }_{1)}$ Coefficient of contraction
${ }_{2}$) Coefficient of velocity
${ }_{3)}$ Coefficient of discharge
${ }_{4}$ Coefficient of resistance

1. Coefficient of Contraction:

\square "The ratio of area of jet, at vena contracta, to the area of orifice is known as coefficient of contraction."
\square Mathematically,

$$
C_{c}=\frac{\text { Area of jet at vena Contracta }}{\text { Area of Orifice }}
$$

\square The value varies slightly with the available head of the liquid, size and the shape of the orifice.
\square An average value of C_{c} is about 0.64.

2. Coefficient of Velocity:

\square "The ratio of actual velocity of the jet, at vena contracta, to the theoretical velocity is known as coefficient of velocity."
\square Mathematically,

$$
C_{v}=\frac{\text { Actual velocity of jet at vena Contracta }}{\text { Theoretical velocity of jet }}
$$

\square The difference between the velocities is due to friction of the orifice.
\square The value of coefficient of velocity varies slightly with the different shapes of the edges of the orifices.
\square For a sharp edged orifice, the value of C_{v} increases with the head of water.

2. Coefficient of Velocity:

\square The following table gives the values of C_{v} for an orifice of 10 mm diameter with the corresponding head (given by Weisback).

\mathbf{H}	$\mathbf{2 0 m m}$	$\mathbf{5 0 0} \mathbf{m m}$	$\mathbf{3 . 5 m}$	$\mathbf{2 0 m}$	$\mathbf{1 0 0 m}$
$\mathbf{C}_{\mathbf{v}}$	0.959	0.967	0.975	0.991	0.994

Note:

\square An Average value of C_{v} is about $\mathbf{0 . 9 7}$
\square The theoretical velocity of jet at vena contracta is given by relation :

$$
V=\sqrt{2 g h}
$$

Where, h is head of water at vena contracta.

3. Coefficient of Discharge:

\square "It is the ratio of actual discharge through an orifice to the theoretical discharge."
\square Mathematically,

$$
\begin{aligned}
C_{d} & =\frac{\text { Actual discharge }}{\text { Theoretical discharge }} \\
& =\frac{\text { Actual velocity } \mathrm{x} \text { Actual area }}{\text { Theoretical velocity } \mathrm{x} \text { Theoretical area }} \\
& =\mathrm{C}_{\mathrm{v}} \times \mathrm{C}_{\mathrm{c}}
\end{aligned}
$$

\square Average value of coefficient of discharge varies from 0.60 to 0.64.

4. Coefficient of Resistance:

\square "The ratio of loss of head in the orifice to the head of water available at the exit of the orifice is known as coefficient of resistance."
\square Mathematically,

$$
C_{r}=\frac{\text { Loss of head in the orifice }}{\text { Head of water }}
$$

\square The loss of head in the orifice takes place, because the walls of the orifice offer some resistance to the liquid as it comes out.
\square The coefficient of resistance is generally neglected, while solving numerical.

Problems:

1. A jet of water issues from an orifice of diameter 20 mm under a head of 1 m . What is the coefficient of discharge for the orifice, if actual discharge is $0.851 \mathrm{lit} / \mathrm{s}$. (Ans, 0.61)
2. A 60 mm diameter orifice is discharging water under a head of 9 m . Calculate the actual discharge through the orifice in $\mathrm{Lit} / \mathrm{s}$ and actual velocity of the jet in m / s at vena contracta, if $\mathrm{C}_{\mathrm{d}}=0.625$ and $\mathrm{C}_{\mathrm{v}}=0.98$. (Ans, $\mathrm{Q}=23.5 \mathrm{lit} / \mathrm{s} \& \mathrm{~V}_{\mathrm{ac}}=$ $13 \mathrm{~m} / \mathrm{s}$)
