
Biaxial Stress System 

The more general stress condition in which the stresses on an element 

acts in both x and y directions and all stress components in z- direction 

vanish is known as biaxial stress system. It is different from one 

dimensional or uniaxial stress condition considered in the previous 

section. Thus it is assumed that all the components in the z-direction 

(  xz =  yz = σ z =0) shown in Fig. No.1 are zero. The stress element 

shown in Fig. No. 2 is obtained; it is the most general condition that can 

exist. Biaxial stresses arise in the analysis of beams, pressure vessels, 

shafts and many other structural members. 
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A class of common engineering problems involving stresses in a thin 

plate or free surface of a structural element, such as the surfaces of thin 

walled pressure vessels under external or internal pressure, the free 

surface of shafts in torsion or beams under transverse loads.

General case of two dimensional stress. 

In general if a plane element is removed from a body it will be 

subjected to the normal stresses σ x and σ y together with the shearing 

stress  xy as shown in fig 3. It is desirable to investigate the state of 

stress on any inclined plane t defined by angle θ, positive ccw as shown 

in fig 4. The resulting relations would make it possible to determine
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normal stress σ n and the shear stress   on the inclined plane t form 

normal n to the inclined plane t form knowledge of normal and shear 

stresses on the X and Y planes (usually known). Note that the normal n 

to the inclined plane t make an angle θ with the x-axis. This angle θ is 

considered to be positive when measured in the ccw direction from the 

positive end of the x-axis. According to sign convention, which is the 

one used throughout this text, a shear stress is positive if it produces 

clockwise rotation of the element on which it is acting and negative if it 

produces counterclockwise rotation. Thus xy on the X plane in Figure 

is positive while xy on the Y plane



(i.e., yx) is negative. However, as was stated earlier, normal stresses are 

positive if tensile and negative if compressive. Isolate the small wedge 

to the left of the inclined plane and construct its free-body diagram as 

shown in Figure (4). If one assumes the area of the inclined plane to be 

A square units, then the area of the X plane would be A cos θ  square 

units and the area of the Y plane would be A sin θ  square units, as 

shown in Figure (5). Thus the forces on the three faces of the wedge 

produced by the normal and shear stresses acting on them can be 

determined in terms of A and the trigonometric functions of the angle θ, 

as shown in Figure (5). 
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Evidently the desired stresses acing on the inclined planes are 

internal quantities with respect to the element shown in Fig. 4. 

Following the usual procedure of introducing a cutting plane so as to 

render the desired quantities external to the new section, the originally 

rectangular element is cut along the plane inclined at the angle θ to the 

x-axis and thus obtain the triangular element shown in Fig. 5. Since half 

of the material have been removed in the rectangular element, it has 

been replaced it by the effect that it exerted upon the remaining lower 

triangle shown and this effect in general consists of both normal and 

shearing forces acting along the inclined plane. 
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Magnitudes of the normal and shearing stresses corresponding to these 

forces have been designated by σ n and   respectively as discussed 

earlier. Thus our problem reduces to finding the unknown stresses σn 

and  in terms of the known stresses σx, σy, and xy. It is to be carefully 

noted that the free-body diagram, Fig. 4. indicates stresses acting on the 

various faces of the element, and not forces. Each of these stresses is 

assumed to be uniformly distributed over the area on which it acts.

Summation of forces in Fig. along the direction of σn ΣFn = 0. 



Shearing Stress acting parallel to the inclined Plan. 

Summing the forces along  (t-direction) Σft = 0. 
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Consider an element 
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The stresses σ 'x and τ ' acting on a plane at right angle to the inclined 

plane on which σx and τ act are obtained by substituting       for θ  in 

1 & 2.

Then these equation are as follows
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By combining 3 & 4 the resulting equation is 

)5('  yxnn 

This shows that sum of normal stresses on any perpendicular planes is 

constant. Similarly comparison of B & B' results is 

)6('  

This shows that shear stresses on perpendicular planes are equal in 

magnitude but opposite in sign. 

Note>>   Cos(2θ+180) = -Cos(2θ)

    Sin(2θ+180) = -Sin(2θ)



Principal Stresses and location of angles 
on which that act. 

In the design and stress analysis, the maximum stresses are desired in 

order to ensure safety of the load carrying member. The above 

equations can be used if we know at what angle θ it occurred. The angle 

θ  can be found by differentiating the function and setting the result 

equal to zero. 
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Equations 7 & 8 define the planes of maximum and minimum normal 

stresses.

Planes defined by equation 7 and 8 are known as principal planes. Thus 

there are two solutions of equation 7, and two values of 2θp (differing 

by 180o) and also two values of θp (differing by 90o). 

The normal stresses that exist on these planes are called principal 

stresses. On one of these two planes, the normal stress is maximum and 

on the second the normal stress is minimum. It will be further shown 

that the Principal Plane are free from shear stresses and therefore 

another way of defining is that the Principal stress are the normal 

stresses acting on the planes on which shear stresses are zero. 



Values of maximum and minimum normal stresses can be obtained by 

substituting values of θP from 7 or 8 into 1. In order to get cos2θ and 

sin 2θ a right angle triangle is drawn as shown in Fig 7 (a & b).

The values of sin 2 θ p and cos 2 θ p as found from the above two 

diagram may now be substituted in equation (1) to get maximum and 

minimum values of normal stresses. 
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Substituting these values in A 
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Normally these Principal stress are denoted by σ1 & σ2. 
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The stresses given by 11 and 12 are the principal stresses and they 

occur the on the principal plane. By substituting one of the values of θp 

from equation 7 into equation 1 one may readily determine which of the 

two principal stresses is acting on that plane. The other Principal stress 

naturally acts on the other Principal plane. 

Another useful relation is obtained by adding the values of Principal 

stresses
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It states that sum of the normal stresses on any two orthogonal planes 

through a point in a stressed body is constant. 



It can be concluded that on the element on which principal stresses act 

the shear stress is zero regardless of the values of σx, σy, xy.

Shear stress is zero at principal plane. 
The vanishing of the shear stress on Principal planes can be shown if 

the values of cos2θp and sin2θp is substituted in equation 2. 
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Maximum shearing stress and its location. 
There are certain values of angles θ  that leads to maximum value of 

shear stress for a given set of stresses σx, σy, xy, the orientation of the 

planes on which maximum shear stress can be found using the same 

technique i.e. differentiating equation 2 w.r.t. θ  and setting it equal to 

zero. 
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Maximum shearing stress

This equation defines two values of 2θs differing by 180o or two values 

of θ s differing by 90o. Corresponding to one of these two angles   is 

algebraic maximum and to the second τ is algebraic minimum. The two 

values of the angles 2 θ s satisfying equation may be represented as 

shown.
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Substituting these values of cosθs and sinθs in 2. 
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Comparison of equation (7 & 14) shows that angles defined by these 

two equation have tangent that are negative reciprocal of each other and 

therefore angle (2θp) is 90o away from (2θs). In other words Principal 

plane are inclined to the planes of maximum or minimum shear by a 45o 

angle. 



Normal stress on Maximum shear stress Element 

In order to see if there is any normal stress existing on the element 

having maximum shear stress θs is to be substituted in 1. 
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Therefore it can be concluded that on the element on which max occurs 

there will be a normal stress equal to the average of initial normal 

stresses. 

Relationship between max and Principal stress. 
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Major or Minor Principal stresses.
when both tensile or compressive Stresses act together, the tensile 

stresses are always the major principal stresses irrespective of 

numerical values.

If both principal stresses are compressive the one with smaller 

magnitude is the major principal stress.

Pure shear.

If both σx or σy are equal in magnitude but of opposite sense then 

σx = -σy = σ0

max = σ0

Then this element is subjected to pure shear at an angle of 45°. 
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